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ABSTRACT Python has become the 

programming language of choice for 

research and industry projects related to 

data science, machine learning, and deep 

learning. Since optimization is an inherent 

part of these research fields, more 

optimization related frameworks have 

arisen in the past few years. Only a few of 

them support optimization of multiple 

conflicting objectives at a time, but do not 

provide comprehensive tools for a 

complete multi-objective optimization 

task. To address this issue, we have 

developed pymoo, a multiobjective 

optimization framework in Python. We 

provide a guide to getting started with our 

framework by demonstrating the 

implementation of an exemplary 

constrained multi-objective optimization 

scenario. Moreover, we give a high-level 

overview of the architecture of pymoo to 

show its capabilities followed by an 

explanation of each module and its 

corresponding sub-modules. The 

implementations in our framework are 

customizable and algorithms can be 

modified/extended by supplying custom 

operators. Moreover, a variety of single, 

multi- and many-objective test problems 

are provided and gradients can be retrieved 

by automatic differentiation out of the box. 

Also, pymoo addresses practical needs, 

such as the parallelization of function 

evaluations, methods to visualize low and 

high-dimensional spaces, and tools for 

multi-criteria decision making. For more 

information about pymoo, readers are 

encouraged to visit: https://pymoo.org. 

I. INTRODUCTION 

Optimization plays an essential role in 

many scientific areas, such as engineering, 

data analytics, and deep learning. These 

fields are fast-growing and their concepts 

are employed for various purposes, for 

instance gaining insights from a large data 

sets or fitting accurate prediction models. 

Whenever an algorithm has to handle a 

significantly large amount of data, an 

efficient implementation in a suitable 

programming language is important. 

Python [1] has become the programming 

language of choice for the above 

mentioned research areas over the last few 

years, not only because it is easy to use but 

also good community support exists. 

Python is a high-level, cross-platform, and 

interpreted programming language that 

focuses on code readability. A large 

number of high-quality libraries are 

available and support for any kind of 

scientific computation is ensured. These 

characteristics make Python an appropriate 

tool for many research and industry 

projects where the investigations can be 

rather complex. 

A fundamental principle of research is to 

ensure reproducibility of studies and to 

provide access to materials used in the 

research, whenever possible. In computer 

science, this translates to a sketch of an 

algorithm and the implementation itself. 

However, the implementation of 

optimization algorithms can be challenging 

and specifically benchmarking is time-

consuming. Having access to either a good 

collection of different source codes or a 

comprehensive library is time-saving and 

avoids an error-prone implementation from 

scratch. 

II. RELATED WORKS 
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In the last decades, various optimization 

frameworks in diverse programming 

languages were developed. However, some 

of them only partially cover multi-

objective optimization. In general, the 

choice of a suitable framework for an 

optimization task is a multi-objective 

problem itself. Moreover, some criteria are 

rather subjective, for instance, the usability 

and extendibility of a framework and, 

therefore, the assessment regarding criteria 

as well as the decision making process 

differ from user to user. For example, one 

might have decided on a programming 

language first, either because of personal 

preference or a project constraint, and then 

search for a suitable framework. One 

might give more importance to the overall 

features of a framework, for example 

parallelization or visualization, over the 

programming language itself. An overview 

of some existing multi-objective 

optimization frameworks in Python is 

listed in Table 1, each of which is 

described in the following. 

 

Recently, the well-known multi-objective 

optimization framework jMetal [5] 

developed in Java [6] has been ported to a 

Python version, namely jMetalPy [7]. The 

authors aim to further extend it and to 

make use of the full feature set of Python, 

for instance, data analysis and data 

visualization. In addition to traditional 

optimization algorithms, jMetalPy also 

offers methods for dynamic optimization. 

Moreover, the post analysis of 

performance metrics of an experiment with 

several independent runs is automated. 

III. GETTING STARTED 

In the following, we provide a starter’s 

guide for pymoo. It covers the most 

important steps in an optimization scenario 

starting with the installation of the 

framework, defining an optimization 

problem, and the optimization procedure 

itself. 

A. INSTALLATION 

Our framework pymoo is available on 

PyPI [17] which is a central repository to 

make Python software package easily 

accessible. The framework can be installed 

by using the package manager: 

 

Some components are available in Python 

and additionally in Cython [18]. Cython 

allows developers to annotate existing 

Python code which is translated to C or 

C++ programming languages. The 

translated files are compiled to a binary 

executable and can be used to speed up 

computations. During the installation of 

pymoo, attempts are made for compilation, 

however, if unsuccessful due to the lack of 

a suitable compiler or other reasons, the 

pure Python version is installed. We would 

like to emphasize that the compilation is 

optional and all features are available 

without it. More detail about the 

compilation and troubleshooting can be 

found in our installation guide online. 

B. PROBLEM DEFINITION 

In general, multi-objective optimization 

has several objective functions with 

subject to inequality and equality 

constraints to optimize [19]. The goal is to 

find a set of solutions (variable vectors) 

that satisfy all constraints and are as good 

as possible regarding all its objectives 
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values. The problem definition in its 

general form is given by: 

 

The formulation above defines a multi-

objective optimization problem with N 

variables, M objectives, J inequality, and K 

equality constraints. Moreover, for each 

variable xi , lower and upper variable 

boundaries (x L i and x U i ) are also 

defined. 

 

 

Finally, the optimization problem to be 

optimized using pymoo is defined by: 

 

Next, the derived problem formulation is 

implemented in Python. Each optimization 

problem in pymoo has to inherit from the 

Problem class. First, by calling the super() 

function the problem properties such as the 

number of variables (n_var), objectives 

(n_obj) and constraints (n_constr) are 

initialized. Furthermore, lower (xl) and 

upper variables boundaries (xu) are 

supplied as a NumPy array. Additionally, 

the evaluation function _evaluate needs to 

be overwritten from the superclass. The 

method takes a two-dimensional NumPy 

array x with n rows and m columns as an 

input. Each row represents an individual 

and each column an optimization variable. 

After doing the necessary calculations, the 

objective values are added to the 

dictionary out with the key F and the 

constraints with key G. 

 

As mentioned above, pymoo utilizes 

NumPy [20] for most of its computations. 

To be able to retrieve gradients through 

automatic differentiation we are using a 

wrapper around NumPy called Autograd 

[22]. Note that this is not obligatory for a 

problem definition. 

C. ALGORITHM INITIALIZATION 

Next, we need to initialize a method to 

optimize the problem. In pymoo, an 

algorithm object needs to be created for 

optimization. For each of the algorithms an 

API documentation is available and 

through supplying different parameters, 

algorithms can be customized in a plug-

and-play manner. In general, the choice of 

a suitable algorithm for optimization 

problems is a challenge itself. Whenever 

problem characteristics are known 
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beforehand we recommended using those 

ugh customized operators. However, in our 

case the optimization problem is rather 

simple, but the aspect of having two 

objectives and two constraints should be 

considered. For this reason, we decided to 

use NSGA-II [12] with its default 

configuration with minor modifications. 

We chose a population size of 40, but 

instead of generating the same number of 

offsprings, we create only 10 in each 

generation. This is a steady-state variant of 

NSGA-II and it is likely to improve the 

convergence property for rather simple 

optimization problems without much 

difficulties, such as the existence of local 

Pareto-fronts. Moreover, we enable a 

duplicate check which makes sure that the 

mating produces offsprings which are 

different with respect to themselves and 

also from the existing population regarding 

their variable vectors. To illustrate the 

customization aspect, we listed the other 

unmodified default operators in the code-

snippet below. The constructor of NSGA2 

is called with the supplied parameters and 

returns an initialized algorithm object. 

 

D. OPTIMIZATION 

Next, we use the initialized algorithm 

object to optimize the defined problem. 

Therefore, the minimize function with both 

instances problem and algorithm as 

parameters is called. Moreover, we supply 

the termination criterion of running the 

algorithm for 40 generations which will 

result in 40 + 40 × 10 = 440 function 

evaluations. In addition, we define a 

random seed to ensure reproducibility and 

enable the verbose flag to see printouts for 

each generation. 

 

IV. ARCHITECTURE 

Software architecture is fundamentally 

important to keep source code organized. 

On the one hand, it helps developers and 

users to get an overview of existing 

classes, and on theother hand, it allows 

flexibility and extendibility by adding new 

modules. Figure 3 visualizes the 

architecture of pymoo. The first level of 

abstraction consists of the optimization 

problems, algorithms and analytics. Each 

of the modules can be categorized into 

more detail and consists of multiple 

submodules. 
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V. PROBLEMS 

A. IMPLEMENTATIONS 

In our framework, we categorize test 

problems regarding the number of 

objectives: single-objective (1 objective), 

multi-objective (2 or 3 objectives) and 

many-objective (more than 3 objectives). 

Test problems implemented in pymoo are 

listed in Table 2. For each problem the 

number of variables, objectives, and 

constraints are indicated. If the test 

problem is scalable to any of the 

parameters, we label the problem with (s). 

If the problem is scalable, but a default 

number was original proposed we indicate 

that with surrounding brackets. In case the 

category does not apply, for example 

because we refer to a test problem family 

with several functions, we use (·). 

B. GRADIENTS 
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It can easily be verified that the values are 

matching with the analytic gradient 

derivation. The gradients for the constraint 

functions can be calculated accordingly by 

adding “dG” to the return_value_of list. 

C. PARALLELIZATION 

If evaluation functions are computationally 

expensive, a serialized evaluation of a set 

of solutions can become the bottleneck of 

the overall optimization procedure. For 

this reason, parallelization is desired for an 

use of existing computational resources 

more efficiently and distribute long-

running calculations. In pymoo, the 

evaluation function receives a set of 

solutions if the algorithm is utilizing a 

population. This empowers the user to 

implement any kind of parallelization as 

long as the objective values for all 

solutions are written as an output when the 

evaluation function terminates. In our 

framework, a couple of possibilities to 

implement parallelization exist: 

VI. OPTIMIZATION MODULE 

The optimization module provides 

different kinds of sub-modules to be used 

in algorithms. Some of them are more of a 

generic nature, such as decomposition and 

termination criterion, and others are more 

related to evolutionary computing. By 

assembling those modules together 

algorithms are built. 

A. ALGORITHMS 

Available algorithm implementations in 

pymoo are listed in Table 3. Compared to 

other optimization frameworks the list of 

algorithms may look rather short, 

however,each algorithm is customizable 

and variants can be initialized with 

different parameters. For instance, a 

Steady-State NSGA-II [27] can be 

initialized by setting the number of 

offspring to 1. This can be achieved by 

supplying this as a parameter in the 

initialization method as shown in Section 

III. Moreover, it is worth mentioning that 

many-objective algorithms, such as 

NSGA-III or MOEAD, require reference 

directions to be provided. The reference 

directions are commonly desired to be 

uniform or to have a bias towards a region 

of interest. Our framework offers an 

implementation of the Das and Dennis 

method [28] for a fixed number of points 

(fixed with respect to a parameter often 

referred to as partition number) and a 

recently proposed Riesz-Energy based 

method which creates a well-spaced point 

set for an arbitrary number of points and is 

capable of introducing a bias towards 

preferred regions in the objective space 

[29]. 

 

B. OPERATORS 

The following evolutionary operators are 

available: 

 (ii) Crossover: A variety of crossover 

operators for different type of variables are 

implemented. In Figure 4 some of them are 

presented. Figures 4a to 4d help to 

visualize the information exchange in a 

crossover with two parents being involved. 

Each row represents an offspring and each 

column a variable. The corresponding 
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boxes indicate whether the values of the 

offspring are inherited from the first or 

from the second parent. For one and two-

point crossovers it can be observed that 

either one or two cuts in the variable 

sequence exist. Contrarily, the Uniform 

Crossover (UX) does not have any clear 

pattern, because each variable is chosen 

randomly either from the first or from the 

second parent. For the Half Uniform 

Crossover (HUX) half of the variables, 

whichare different, are exchanged. For the 

purpose of illustration, we have created 

two parents that have different values in 10 

different positions. For real variables, 

Simulated Binary Crossover [42] is known 

to be an efficient crossover. It mimics the 

crossover of binary encoded variables. In 

Figure 4e the probability distribution when 

the parents x1 = 0.2 and x2 = 0.8 where xi ∈ [0, 1] with η = 0.8 are recombined is 
shown.  

 

C. TERMINATION CRITERION 

For every algorithm it must be determined 

when it should terminate a run. This can be 

simply based on a predefined number of 

function evaluations, iterations, or a more 

advanced criterion, such as the change of a 

performance metric over time. For 

example, we have implemented a 

termination criterion based on the variable 

and objective space difference between 

generations. To make the termination 

criterion more robust the last k generations 

are considered. The largest movement 

from a solution to its closest neighbour is 

tracked across generation and whenever it 

is below a certain threshold, the algorithm 

is considered to have converged. 

Analogously, the movement in the 

objective space can also be used. In the 

objective space, however, normalization is 

more challenging and has to be addressed 

carefully.  

VII. ANALYTICS 

A. PERFORMANCE INDICATORS 

GD+/IGD+: A variation of GD and IGD 

has been proposed in [53]. The Euclidean 

distance is replaced by a distance measure 

that takes the dominance relation into 

account. The authors show that IGD+ is 

weakly Pareto compliant.  

VIII. CONCLUDING REMARKS 

This paper has introduced pymoo, a multi-

objective optimization framework in 

Python. We have walked through our 

framework beginning with the installation 

up to the optimization of a constrained bi-

objective optimization problem. Moreover, 

we have presented the overall architecture 

of the framework consisting of three core 

modules: Problems, Optimization, and 

Analytics. Each module has been 

described in depth and illustrative 

examples have been provided. We have 

shown that our framework covers various 

aspects of multi-objective optimization 

including the visualization of high-
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dimensional spaces and multi-criteria 

decision making to finally select a solution 

out of the obtained solution set. One 

distinguishing feature of our framework 

with other existing ones is that we have 

provided a few options for various key 

aspects of a multi-objective optimization 

task, providing standard evolutionary 

operators for optimization, standard 

performance metrics for evaluating a run, 

standard visualization techniques for 

showcasing obtained trade-off solutions, 

and a few approaches for decision-making. 

Most such implementations were 

originally suggested and developed by the 

second author and his collaborators for 

more than 25 years. 
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